Simulating Ozone Effects on Forest Productivity: Interactions among Leaf-, Canopy-, and Stand-level Processes

نویسندگان

  • SCOTT V. OLLINGER
  • JOHN D. ABER
  • PETER B. REICH
چکیده

Ozone pollution in the lower atmosphere is known to have adverse effects on forest vegetation, but the degree to which mature forests are impacted has been very difficult to assess directly. In this study, we combined leaf-level ozone response data from independent ozone fumigation studies with a forest ecosystem model in order simulate the effects of ambient ozone on mature hardwood forests. Reductions in leaf carbon gain were determined as a linear function of ozone flux to the leaf interior, calculated as the product of ozone concentration and leaf stomatal conductance. This relationship was applied to individual canopy layers within the model in order to allow interaction with standand canopy-level factors such as light attenuation, leaf morphology, soil water limitations, and vertical ozone gradients. The resulting model was applied to 64 locations across the northeastern United States using ambient ozone data from 1987 to 1992. Predicted declines in annual net primary production ranged from 3 to 16% with greatest reductions in southern portions of the region where ozone levels were highest, and on soils with high water-holding capacity where drought stress was absent. Reductions in predicted wood growth were slightly greater (3– 22%) because wood is a lower carbon allocation priority in the model than leaf and root growth. Interannual variation in predicted ozone effects was small due to concurrent fluctuations in ozone and climate. Periods of high ozone often coincided with hot, dry weather conditions, causing reduced stomatal conductance and ozone uptake. Within-canopy ozone concentration gradients had little effect on predicted growth reductions because concentrations remained high through upper canopy layers where net carbon assimilation and ozone uptake were greatest. Sensitivity analyses indicate a trade-off between model sensitivity to available soil water and foliar nitrogen and demonstrate uncertainties regarding several assumptions used in the model. Uncertainties surrounding ozone effects on stomatal function and plant water use efficiency were found to have important implications on current predictions. Field measurements of ozone effects on mature forests will be needed before the accuracy of model predictions can be fully assessed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simulating the growth response of aspen to elevated ozone: a mechanistic approach to scaling a leaf-level model of ozone effects on photosynthesis to a complex canopy architecture.

Predicting ozone-induced reduction of carbon sequestration of forests under elevated tropospheric ozone concentrations requires robust mechanistic leaf-level models, scaled up to whole tree and stand level. As ozone effects depend on genotype, the ability to predict these effects on forest carbon cycling via competitive response between genotypes will also be required. This study tests a proces...

متن کامل

Using Remotely Sensed Imagery for Forest Resource Assessment and Inventory

Forests are complex ecosystems that develop over centuries through the interactions between organisms and biogeochemical cycles of elements occurring in the soil-atmosphere continuum. The biomass and structure of a forest stand is involved in several ecosystem processes and has been used as an indicator of forest health and productivity. The forest biomass is a key component of the carbon cycle...

متن کامل

Simulating effects of fire on northern Rocky Mountain landscapes with the ecological process model FIRE-BGC.

A mechanistic, biogeochemical succession model, FIRE-BGC, was used to investigate the role of fire on long-term landscape dynamics in northern Rocky Mountain coniferous forests of Glacier National Park, Montana, USA. FIRE-BGC is an individual-tree model-created by merging the gap-phase process-based model FIRESUM with the mechanistic ecosystem biogeochemical model FOREST-BGC-that has mixed spat...

متن کامل

Leaf and canopy conductance in aspen and aspen-birch forests under free-air enrichment of carbon dioxide and ozone.

Increasing concentrations of atmospheric carbon dioxide (CO2) and tropospheric ozone (O3) have the potential to affect tree physiology and structure, and hence forest feedbacks on climate. Here, we investigated how elevated concentrations of CO2 (+45%) and O3 (+35%), alone and in combination, affected conductance for mass transfer at the leaf and canopy levels in pure aspen (Populus tremuloides...

متن کامل

A Linked Model for Simulating Stand Development and Growth Processes of Loblolly Pine

Linking models of different scales (e.g., process, tree-stand-ecosystem) is essential for furthering our understanding of stand, climatic, and edaphic effects on tree growth and forest productivity. Moreover, linking existing models that differ in scale and levels of resolution quickly identifies knowledge gaps in information required to scale from one level to another, indentifies firture rese...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999